If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5z^2-45z=0
a = 5; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·5·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*5}=\frac{0}{10} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*5}=\frac{90}{10} =9 $
| 0.25(p-8)=0.1(p+7) | | (5x-2x)+3=9 | | (0,4/50)/(0,6/50)*(x-0,8/50)(x-0,8/50)=247 | | 4x+5=4.5x+3 | | 144=4y | | 25+100=x^2 | | 0,4/50/0,6/50*x-0,8/50^2=247 | | 5x+-2x+-8=x+-2x+8 | | 9-5z=-8 | | 5x+-2x+8=x+-2x+8 | | -32-(-33)=x÷10 | | x÷5=5÷x | | 360/n=18 | | 3/4(8-4k)=2k-9 | | 1/4x-3=-2/5x+10 | | 4x-2-10=-22-2x | | 9^2-6x=3 | | 20-0.07x=17.62 | | 6^2-6x=3 | | 7m+7=15.89 | | 3^2-6x=3 | | 5x=66-x | | -9^2-6x=3 | | y=-3/2(100)+90 | | 19.99+97m=219.81 | | 6x=4x+22 | | 13x-21=85+31 | | 8x/5+13=1/6x | | 4+5x=2+21x | | 90-8.33p=48.35 | | x=198*0.9 | | x^2-20=80 |